Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Arch Virol ; 154(10): 1609-17, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19756360

RESUMO

Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs). Here, we describe the expression, purification and characterization of recombinant HPV16 L1 produced by a methylotrophic yeast. A codon-optimized HPV16 L1 gene was cloned into a non-integrative expression vector under the regulation of a methanol-inducible promoter and used to transform competent Pichia pastoris cells. Purification of L1 protein from yeast extracts was performed using heparin-sepharose chromatography, followed by a disassembly/reassembly step. VLPs could be assembled from the purified L1 protein, as demonstrated by electron microscopy. The display of conformational epitopes on the VLPs surface was confirmed by hemagglutination and hemagglutination inhibition assays and by immuno-electron microscopy. This study has implications for the development of an alternative platform for the production of a papillomavirus vaccine that could be provided by public health programs, especially in resource-poor areas, where there is a great demand for low-cost vaccines.


Assuntos
Proteínas do Capsídeo/metabolismo , Papillomavirus Humano 16/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Pichia/virologia , Western Blotting , Proteínas do Capsídeo/isolamento & purificação , Transformação Celular Viral/fisiologia , Eletroforese em Gel de Poliacrilamida , Regulação Viral da Expressão Gênica , Testes de Inibição da Hemaglutinação , Papillomavirus Humano 16/ultraestrutura , Microscopia Eletrônica de Transmissão , Proteínas Oncogênicas Virais/isolamento & purificação , Infecções por Papillomavirus/metabolismo , Pichia/metabolismo
2.
Archives of Virology ; 154(10): 1609-1617, sept 10, 2009.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1059824

RESUMO

Human papillomaviruses (HPVs) are responsible for the most common human sexually transmitted viral infections. Infection with high-risk HPVs, particularly HPV16, is associated with the development of cervical cancer. The papillomavirus L1 major capsid protein, the basis of the currently marketed vaccines, self-assembles into virus-like particles (VLPs). Here, we describe the expression, purification and characterization of recombinant HPV16 L1 produced by a methylotrophic yeast. A codon-optimized HPV16 L1 gene was cloned into a non-integrative expression vector under the regulation of a methanol-inducible promoter and used to transform competent Pichia pastoris cells. Purification of L1 protein from yeast extracts was performed using heparin-sepharose chromatography, followed by a disassembly/reassembly step. VLPs could be assembled from the purified L1 protein, as demonstrated by electron microscopy. The display of conformational epitopes on the VLPs surface was confirmed by hemagglutination and hemagglutination inhibition assays and by immuno-electron microscopy. This study has implications for the development of an alternative platform for the production of a papillomavirus vaccine that could be provided by public health programs, especially in resource-poor areas, where there is a great demand for low-cost vaccines.


Assuntos
Humanos , /isolamento & purificação , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus
3.
Microbes Infect ; 8(4): 1016-24, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16549380

RESUMO

Mucosal epithelia constitute the first barriers to be overcome by pathogens during infection. The induction of protective IgA in this location is important for the prevention of infection and can be achieved through different mucosal immunization strategies. Lactic acid bacteria have been tested in the last few years as live vectors for the delivery of antigens at mucosal sites, with promising results. In this work, Streptococcus pneumoniae PsaA antigen was expressed in different species of lactic acid bacteria, such as Lactococcus lactis, Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus helveticus. After nasal inoculation of C57Bl/6 mice, their ability to induce both systemic (IgG in serum) and mucosal (IgA in saliva, nasal and bronchial washes) anti-PsaA antibodies was determined. Immunization with L. lactis MG1363 induced very low levels of IgA and IgG, possibly by the low amount of PsaA expressed in this strain and its short persistence in the nasal mucosa. All three lactobacilli persisted in the nasal mucosa for 3 days and produced a similar amount of PsaA protein (150-250 ng per 10(9) CFU). However, L. plantarum NCDO1193 and L. helveticus ATCC15009 elicited the highest antibody response (IgA and IgG). Vaccination with recombinant lactobacilli but not with recombinant L. lactis led to a decrease in S. pneumoniae recovery from nasal mucosa upon a colonization challenge. Our results confirm that certain Lactobacillus strains have intrinsic properties that make them suitable candidates for mucosal vaccination experiments.


Assuntos
Adesinas Bacterianas/imunologia , Anticorpos Antibacterianos/análise , Aderência Bacteriana/imunologia , Lipoproteínas/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Mucosa Respiratória/imunologia , Streptococcus pneumoniae/imunologia , Vacinação , Vacinas de DNA/administração & dosagem , Adesinas Bacterianas/biossíntese , Adesinas Bacterianas/genética , Administração Intranasal , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/sangue , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Feminino , Imunoglobulina A/análise , Imunoglobulina G/sangue , Lactobacillus/genética , Lactobacillus/metabolismo , Lipoproteínas/biossíntese , Lipoproteínas/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas/genética , Saliva/imunologia , Especificidade da Espécie
4.
Appl Environ Microbiol ; 72(1): 745-52, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16391114

RESUMO

Infections with human papillomavirus type 16 (HPV-16) are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, the most promising vaccine against HPV-16 infection is based on the L1 major capsid protein, which self-assembles in virus-like particles (VLPs). In this work, we used a lactose-inducible system based on the Lactobacillus casei lactose operon promoter (plac) for expression of the HPV-16 L1 protein in L. casei. Expression was confirmed by Western blotting, and an electron microscopy analysis of L. casei expressing L1 showed that the protein was able to self-assemble into VLPs intracellularly. The presence of conformational epitopes on the L. casei-produced VLPs was confirmed by immunofluorescence using the anti-HPV-16 VLP conformational antibody H16.V5. Moreover, sera from mice that were subcutaneously immunized with L. casei expressing L1 reacted with Spodoptera frugiperda-produced HPV-16 L1 VLPs, as determined by an enzyme-linked immunosorbent assay. The production of L1 VLPs by Lactobacillus opens the possibility for development of new live mucosal prophylactic vaccines.


Assuntos
Proteínas do Capsídeo/metabolismo , Lacticaseibacillus casei/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Recombinação Genética , Vacinas Virais , Vírion/metabolismo , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Células Cultivadas , Papillomavirus Humano 16/metabolismo , Humanos , Imunização , Lacticaseibacillus casei/genética , Lactose/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Oncogênicas Virais/administração & dosagem , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Óperon , Regiões Promotoras Genéticas , Conformação Proteica , Spodoptera , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia
5.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1059768

RESUMO

Infections with human papillomavirus type 16 (HPV-16) are closely associated with the development of human cervical carcinoma, which is one of the most common causes of cancer death in women worldwide. At present, the most promising vaccine against HPV-16 infection is based on the L1 major capsid protein, which self-assembles in virus-like particles (VLPs). In this work, we used a lactose-inducible system based on the Lactobacillus casei lactose operon promoter (plac) for expression of the HPV-16 L1 protein in L. casei. Expression was confirmed by Western blotting, and an electron microscopy analysis of L. casei expressing L1 showed that the protein was able to self-assemble into VLPs intracellularly. The presence of conformational epitopes on the L. casei-produced VLPs was confirmed by immunofluorescence using the anti-HPV-16 VLP conformational antibody H16.V5. Moreover, sera from mice that were subcutaneously immunized with L. casei expressing L1 reacted with Spodoptera frugiperda-produced HPV-16 L1 VLPs, as determined by an enzyme-linked immunosorbent assay. The production of L1 VLPs by Lactobacillus opens the possibility for development of new live mucosal prophylactic vaccines.


Assuntos
Feminino , Humanos , /classificação , Vacinas
6.
Biochem Biophys Res Commun ; 321(1): 192-6, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15358234

RESUMO

Cholera toxin B subunit (CTB) is responsible for CT holotoxin binding to the cell and has been described as a mucosal adjuvant for vaccines. In this work, the ctxB gene was genetically fused to the psaA gene from Streptococcus pneumoniae, a surface protein involved in its colonization in the host that is also considered a vaccine antigen candidate against this pathogen. The CTB-PsaA fusion protein was expressed in Escherichia coli, and the purified protein was used for intranasal immunization experiments in Balb/C mice. CTB-PsaA was able to induce both systemic and mucosal antibodies evaluated in serum, saliva, and in nasal and bronchial wash samples, showing that CTB-PsaA is a promising molecule to be investigated as S. pneumoniae vaccine antigen candidate.


Assuntos
Formação de Anticorpos/efeitos dos fármacos , Linfócitos B/imunologia , Proteínas de Bactérias/farmacologia , Toxina da Cólera/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Administração Intranasal , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/farmacologia , Linfócitos B/efeitos dos fármacos , Proteínas de Bactérias/genética , Toxina da Cólera/genética , Escherichia coli/genética , Imunoglobulina A/análise , Imunoglobulina G/análise , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...